

Curledge Street Academy

Power Maths calculation policy, KS1

The following pages show the *Power Maths* progression in calculation (addition, subtraction, multiplication and division) and how this works in line with the National Curriculum. The consistent use of the CPA (concrete, pictorial, abstract) approach across *Power Maths* helps children develop mastery across all the operations in an efficient and reliable way. This policy shows how these methods develop children's confidence in their understanding of both written and mental methods.

KEY STAGE 1

Children develop the core ideas that underpin all calculation. They begin by connecting calculation with counting on and counting back, but they should learn that understanding wholes and parts will enable them to calculate efficiently and accurately, and with greater flexibility. They learn how to use an understanding of 10s and 1s to develop their calculation strategies, especially in addition and subtraction.

Key language: whole, part, ones, ten, tens, number bond, add, addition, plus, total, altogether, subtract, subtraction, find the difference, take away, minus, less, more, group, share, equal, equals, is equal to, groups, equal groups, times, multiply, multiplied by, divide, share, shared equally, times-table

Addition and subtraction: Children first learn to connect addition and subtraction with counting, but they soon develop two very important skills: an understanding of parts and wholes, and an understanding of unitising 10s, to develop efficient and effective calculation strategies based on known number bonds and an increasing awareness of place value. Addition and subtraction are taught in a way that is interlinked to highlight the link between the two operations.

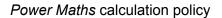
A key idea is that children will select methods and approaches based on their number sense. For example, in Year 1, when faced with 15 – 3 and 15 – 13, they will adapt their ways of approaching the calculation appropriately. The teaching should always emphasise the importance of mathematical thinking to ensure accuracy and flexibility of approach, and the importance of using known number facts to harness their recall of bonds within 20 to support both addition and subtraction methods.

In Year 2, they will start to see calculations presented in a column format, although this is not expected to be formalised until KS2. We show the column method in Year 2 as an option; teachers may not wish to include it until Year 3.

Multiplication and division: Children develop an awareness of equal groups and link this with counting in equal steps, starting with 2s, 5s and 10s. In Year 2, they learn to connect the language of equal groups with the mathematical symbols for multiplication and division.

They learn how multiplication and division can be related to repeated addition and repeated subtraction to find the answer to the calculation.

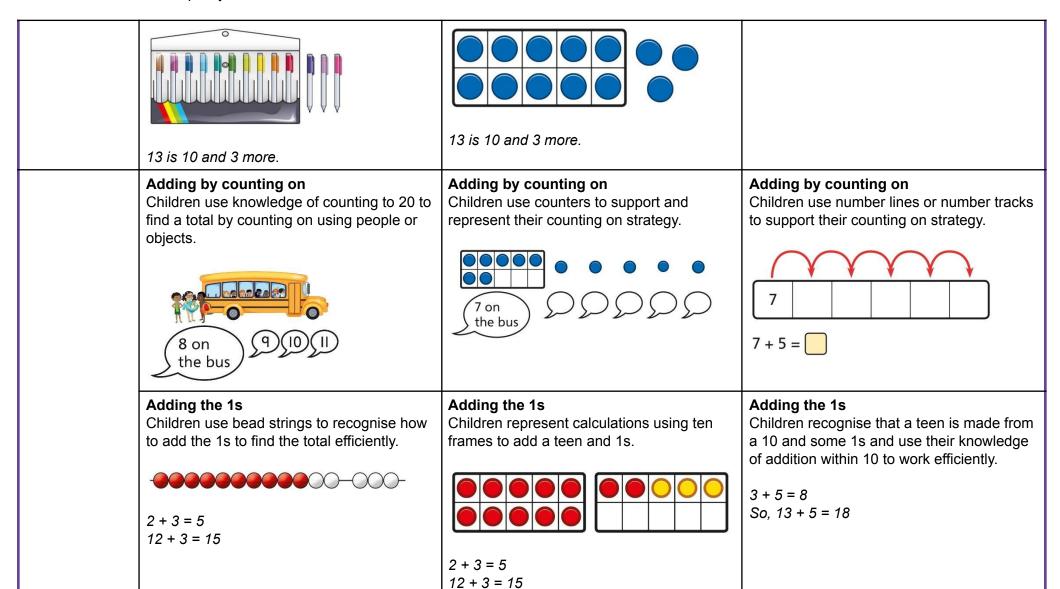
In this key stage, it is vital that children explore and experience a variety of strong images and manipulative representations of equal groups, including concrete experiences as well as abstract calculations.


Children begin to recall some key multiplication facts, including doubles, and an understanding of the 2, 5 and 10 times-tables and how they are related to counting.

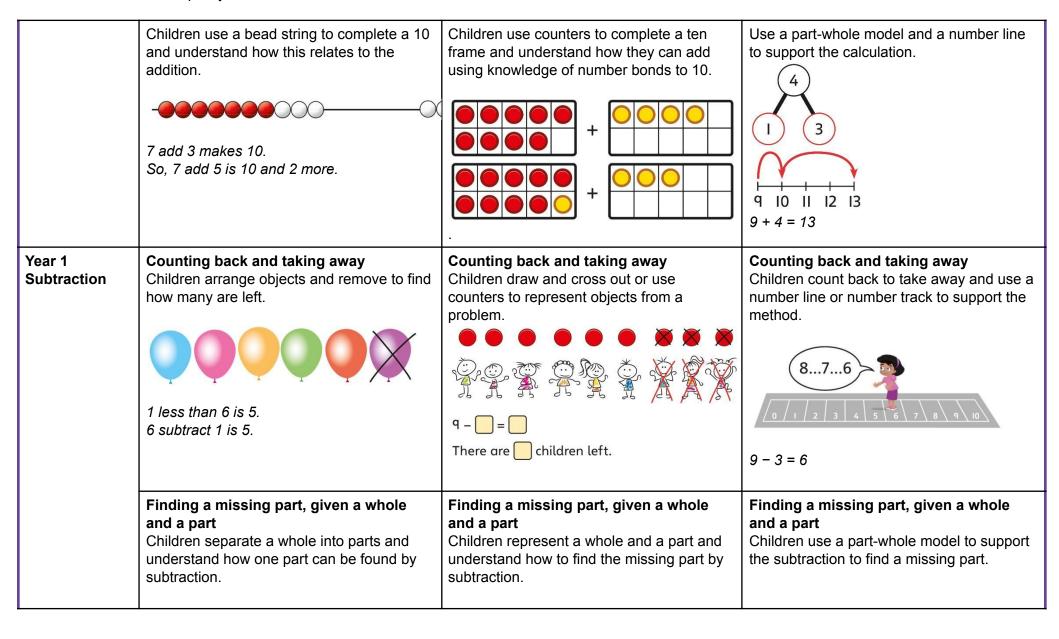
Fractions: In Year 1, children encounter halves and quarters, and link this with their understanding of sharing. They experience key spatial representations of these fractions, and learn to recognise examples and non-examples, based on their awareness of equal parts of a whole.

In Year 2, they develop an awareness of unit fractions and experience non-unit fractions, and they learn to write them and read them in the common format of numerator and denominator.

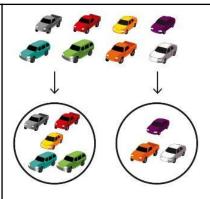
		Year 1	
	Concrete	Pictorial	Abstract
Year 1 Addition	Counting and adding more Children add one more person or object to a group to find one more.	Counting and adding more Children add one more cube or counter to a group to represent one more.	Counting and adding more Use a number line to understand how to link counting on with finding one more.
		00000	one more 0 1 2 3 4 5 6 7 8 9 10
		One more than 4 is 5.	One more than 6 is 7. 7 is one more than 6.
			Learn to link counting on with adding more than one.
			0 1 2 3 4 5 6 7 8 9 10 5 + 3 = 8
	Understanding part-part-whole relationship	Understanding part-part-whole relationship	Understanding part-part-whole relationship
	Sort people and objects into parts and understand the relationship with the whole.	Children draw to represent the parts and understand the relationship with the whole.	Use a part-whole model to represent the numbers.
			6 4
			6 + 4 = 10
		The parts are 1 and 5. The whole is 6.	

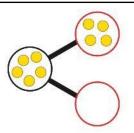


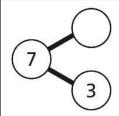
The parts are 2 and 4. The whole is 6.		6 + 4 = 10
Knowing and finding number bonds within 10 Break apart a group and put back together to find and form number bonds. 3 + 4 = 7 6 = 2 + 4	Knowing and finding number bonds within 10 Use five and ten frames to represent key number bonds. 5 = 4 + 1 10 = 7 + 3	Knowing and finding number bonds within 10 Use a part-whole model alongside other representations to find number bonds. Make sure to include examples where one of the parts is zero. a) 4 + 0 = 4 3 + 1 = 4
Understanding teen numbers as a complete 10 and some more Complete a group of 10 objects and count more.	Understanding teen numbers as a complete 10 and some more Use a ten frame to support understanding of a complete 10 for teen numbers.	Understanding teen numbers as a complete 10 and some more. 1 ten and 3 ones equal 13. 10 + 3 = 13

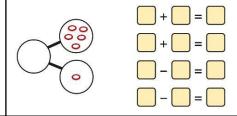

Bridging the 10 using number bonds

Bridging the 10 using number bonds


Bridging the 10 using number bonds



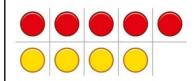



$$8 - 5 = ?$$

$$7 - 3 = ?$$

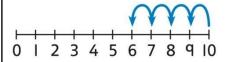
Children develop an understanding of the relationship between addition and subtraction facts in a part-whole model.

Finding the difference


Arrange two groups so that the difference between the groups can be worked out.

8 is 2 more than 6.6 is 2 less than 8.The difference between 8 and 6 is 2.

Finding the difference


Represent objects using sketches or counters to support finding the difference.

5 - 4 = 1The difference between 5 and 4 is 1.

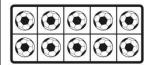
Finding the difference

Children understand 'find the difference' as subtraction.

$$10 - 4 = 6$$
The difference between 10 and 6 is 4.

Subtraction within 20

Understand when and how to subtract 1s efficiently.


Use a bead string to subtract 1s efficiently.

$$5 - 3 = 2$$

 $15 - 3 = 12$

Subtraction within 20

Understand when and how to subtract 1s efficiently.

Subtraction within 20

Understand how to use knowledge of bonds within 10 to subtract efficiently.

$$5 - 3 = 2$$

 $15 - 3 = 12$

Subtracting 10s and 1s

For example: 18 - 12

Subtract 12 by first subtracting the 10, then the remaining 2.

First subtract the 10, then take away 2.

Subtracting 10s and 1s

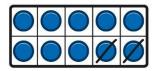
For example: 18 - 12

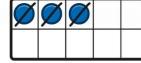
Use ten frames to represent the efficient method of subtracting 12.

First subtract the 10, then subtract 2.

Subtracting 10s and 1s

Use a part-whole model to support the calculation.

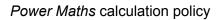

Subtraction bridging 10 using number bonds


For example: 12 - 7

Arrange objects into a 10 and some 1s, then decide on how to split the 7 into parts.

Subtraction bridging 10 using number bonds

Represent the use of bonds using ten frames.

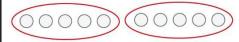


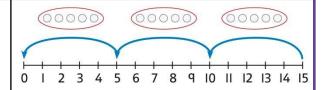
Subtraction bridging 10 using number bonds

Use a number line and a part-whole model to support the method.

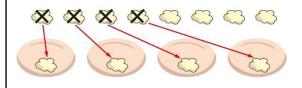
13 - 5

	7 is 2 and 5, so I take away the 2 and then the 5.	For 13 – 5, I take away 3 to make 10, then take away 2 to make 8.	2 3 -2 -3 5 6 7 8 9 10 II 12 13
Year 1 Multiplication	Recognising and making equal groups Children arrange objects in equal and unequal groups and understand how to recognise whether they are equal. A B C	Recognising and making equal groups Children draw and represent equal and unequal groups. A B B A A A A A A A A A A A A A A A A	Describe equal groups using words Three equal groups of 4. Four equal groups of 3.
	Finding the total of equal groups by counting in 2s, 5s and 10s There are 5 pens in each pack 510152025303540	Finding the total of equal groups by counting in 2s, 5s and 10s 100 squares and ten frames support counting in 2s, 5s and 10s. 1	Finding the total of equal groups by counting in 2s, 5s and 10s Use a number line to support repeated addition through counting in 2s, 5s and 10s.
Year 1 Division	Grouping Learn to make equal groups from a whole and find how many equal groups of a certain size can be made.	Grouping Represent a whole and work out how many equal groups.	Grouping Children may relate this to counting back in steps of 2, 5 or 10.

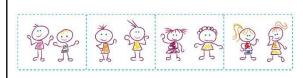



Sort a whole set people and objects into equal groups.

There are 10 children altogether. There are 2 in each group. There are 5 groups.



There are 10 in total. There are 5 in each group. There are 2 groups.


Sharing

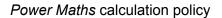
Share a set of objects into equal parts and work out how many are in each part.

Sharing

Sketch or draw to represent sharing into equal parts. This may be related to fractions.

Sharing

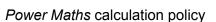
10 shared into 2 equal groups gives 5 in each group.


		Year 2	
	Concrete	Pictorial	Abstract
Year 2 Addition			
Understanding 10s and 1s	Group objects into 10s and 1s. Bundle straws to understand unitising of 10s.	Understand 10s and 1s equipment, and link with visual representations on ten frames.	Represent numbers on a place value grid, using equipment or numerals. Tens Ones 3 2 Tens Ones 4 3
Adding 10s	Use known bonds and unitising to add 10s. I know that 4 + 3 = 7. So, I know that 4 tens add 3 tens is 7 tens.	Use known bonds and unitising to add 10s. #### ###############################	Use known bonds and unitising to add 10s. 7 4 + 3 = 4 + 3 = 7 4 tens + 3 tens = 7 tens 40 + 30 = 70

Adding a 1-digit number to a 2-digit number not bridging a 10	Add the 1s to find the total. Use known bonds within 10. 41 is 4 tens and 1 one. 41 add 6 ones is 4 tens and 7 ones. This can also be done in a place value grid.	Add the 1s. +	Add the 1s. Understand the link between counting on and using known number facts. Children should be encouraged to use known number bonds to improve efficiency and accuracy. This can be represented horizontally or vertically. 34 + 5 = 39 or T O 3 4 + 5 q
Adding a 1-digit number to a 2-digit number bridging 10	Complete a 10 using number bonds.	Complete a 10 using number bonds.	Complete a 10 using number bonds.

	There are 4 tens and 5 ones. I need to add 7. I will use 5 to complete a 10, then add 2 more.	+	7 = 5 + 2 45 + 5 + 2 = 52
Adding a 1-digit number to a 2-digit number using exchange	Exchange 10 ones for 1 ten.	Exchange 10 ones for 1 ten. TOO OOO OOO OOO OOO OOO OOO OOO OOO O	Exchange 10 ones for 1 ten. T O 2 4 4 8 8 3 2
Adding a multiple of 10 to a 2-digit number	Add the 10s and then recombine. 27 is 2 tens and 7 ones. 50 is 5 tens. There are 7 tens in total and 7 ones. So, 27 + 50 is 7 tens and 7 ones.	Add the 10s and then recombine.	Add the 10s and then recombine. 37 + 20 = ? 30 + 20 = 50 50 + 7 = 57 37 + 20 = 57

		A 100 square can support this understanding.	
Adding a multiple of 10 to a 2-digit number using columns	Add the 10s using a place value grid to support. T O 10 10 10 10 10 10 10 10 10	Add the 10s using a place value grid to support. T O O O O O O O O O O O O O O O O O O	Add the 10s represented vertically. Children must understand how the method relates to unitising of 10s and place value. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Adding two 2-digit numbers	Add the 10s and 1s separately.	Add the 10s and 1s separately. Use a part-whole model to support.	Add the 10s and the 1s separately, bridging 10s where required. A number line can support the calculations.


	5 + 3 = 8 There are 8 ones in total. $3 + 2 = 5$ There are 5 tens in total. $35 + 23 = 58$	32 + II 11 = 10 + 1 32 + 10 = 42 42 + 1 = 43 32 + 11 = 43	17 + 25 17 + 25
Adding two 2-digit numbers using a place value grid	Add the 1s. Then add the 10s. Tens Ones Tens Ones + Description of the second of th		Add the 1s. Then add the 10s. T O 3 2 + 1 4 6 6 T O 3 2 + 1 4 4 6 6
Adding two 2-digit numbers with exchange	Add the 1s. Exchange 10 ones for a ten. Then add the 10s.		Add the 1s. Exchange 10 ones for a ten. Then add the 10s.

	Tens Ones Tens Ones		TO 36+29 5 TO 36+29 65
Year 2 Subtraction			
Subtracting multiples of 10	Use known number bonds and unitising to subtract multiples of 10.	Use known number bonds and unitising to subtract multiples of 10.	Use known number bonds and unitising to subtract multiples of 10.
		30	2 5 20 50
	8 subtract 6 is 2. So, 8 tens subtract 6 tens is 2 tens.	10 - 3 = 7 So, 10 tens subtract 3 tens is 7 tens.	7 tens subtract 5 tens is 2 tens. 70 − 50 = 20

Subtracting a	Subtract the 1s. This may be done in or out	Subtract the 1s. This may be done in or out	Subtract the 1s. Understand the link
single-digit number	of a place value grid.	of a place value grid.	between counting back and subtracting the 1s using known bonds.
	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		30 31 32 33 34 35 36 37 38 39 40
	T O	T O	$ \begin{array}{c c} \hline & T & O \\ & 3 & q \\ & - & 3 \\ \hline & 3 & 6 \\ & 3 & 6 \\ & 9 - 3 = 6 \\ & 39 - 3 = 36 \end{array} $
Subtracting a single-digit	Bridge 10 by using known bonds.	Bridge 10 by using known bonds.	Bridge 10 by using known bonds.
number bridging 10			-4 16 17 18 19 20 21 22 23 24 25 26
	35 – 6 I took away 5 counters, then 1 more.	35 – 6 First, I will subtract 5, then 1.	24 - 6 = ? 24 - 4 - 2 = ?
Subtracting a single-digit number using exchange	Exchange 1 ten for 10 ones. This may be done in or out of a place value grid.	Exchange 1 ten for 10 ones.	Exchange 1 ten for 10 ones.

Т	0
0	HESTORIES HESTOR
Т	0
ON THE PROPERTY OF THE PROPERT	(1001001000) (1001001000) (1001001000) (1001001000) (1001001000) (1001001000) (1001001000) (1001001000) (1001001000) (10010010000) (1001001000) (1001001000) (1001001000) (100100000) (100100000) (100100000) (100100000) (100100000) (100100000) (100100000) (100100000) (100100000) (100100000) (100100000) (100100000) (100100000) (100100000) (100100000) (100100000) (100100000) (1001000000) (100100000) (100100000) (100100000) (100100000) (1001000000) (100100000) (100100000) (100100000) (100100000) (100100000) (100100000) (100100000) (100100000) (100100000) (100100000) (100100000) (100100000) (100100000) (100100000) (100100000) (1001000000) (100100000) (100100000) (100100000) (100100000) (100100000) (100100000) (100100000) (100100000) (100100000) (10010000) (100100000) (10010000) (10010000) (10010000) (10010000) (10010000) (10010000) (10010000) (10010000) (10010000) (10010000) (10010000) (10010000) (10010000) (10010000) (10010000) (10010000) (10010000) (1001000) (10010000) (10010000) (10010000) (10010000) (10010000) (1

Т	0
	999
Т	0
(HIHHHE	

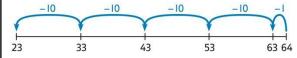
1		2	T			2	Т
8	7	¹ 5	0	8	7	۱5	0

25 - 7 = 18

Subtracting a 2-digit number

Subtract by taking away.

00	000	OC	00	00	0	\Box
00	000	OC	00	00	0	\Box
00	000	OC	00	\circ	0	\Box
00)0(OC	00	OC	0	\Box
00	OO(00	Ø	30	Ø	2
Ø Q	300	00	Ø	30	Ø	2
Ø						

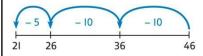

61 – 18 I took away 1 ten and 8 ones. Subtract the 10s and the 1s.

This can be represented on a 100 square.

_									
1	2	3	4	5	6	7	8	9	10
П	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	148	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
٩ı	92	93	94	95	96	97	98	99	100

Subtract the 10s and the 1s.

This can be represented on a number line.



$$64 - 41 = ?$$

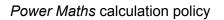
$$64 - 1 = 63$$

$$63 - 40 = 23$$

$$64 - 41 = 23$$

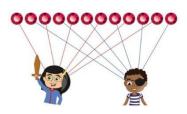
$$46 - 20 = 26$$

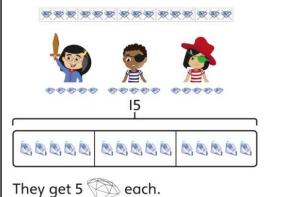
$$46 - 25 = 21$$


Subtracting a 2-digit number using place value and columns	Subtract the 1s. Then subtract the 10s. This may be done in or out of a place value grid. $ \begin{array}{c c} T & O \\ \hline 0 & 0 & 0 \\ \hline 0 &$	Subtract the 1s. Then subtract the 10s. Tens Ones	Using column subtraction, subtract the 1s. Then subtract the 10s. TO 4 5 - 1 2 3 TO 4 5 - 1 2 3 3
Subtracting a 2-digit number with exchange		Exchange 1 ten for 10 ones. Then subtract the 1s. Then subtract the 10s.	Using column subtraction, exchange 1 ten for 10 ones. Then subtract the 1s. Then subtract the 10s.

Year 2		Tens Ones Tens Ones Tens Ones Tens Ones Tens Ones Tens Ones	$ \frac{T O}{4 5} $ $ -2 7 $ $ \frac{T O}{3 \cancel{4} 15} $ $ -2 7 $ $ \frac{T O}{3 \cancel{4} 15} $ $ -2 7 $ $ \frac{8}{8} $ $ \frac{T O}{3 \cancel{4} 15} $ $ -2 7 $ $ \frac{8}{1 8} $
Multiplication Equal groups and repeated addition	Recognise equal groups and write as repeated addition and as multiplication. 3 groups of 5 chairs 15 chairs altogether	Recognise equal groups using standard objects such as counters and write as repeated addition and multiplication. 3 groups of 5 15 in total	Use a number line and write as repeated addition and as multiplication. $ \begin{array}{cccccccccccccccccccccccccccccccccc$
Using arrays to represent	Understand the relationship between arrays, multiplication and repeated addition.	Understand the relationship between arrays, multiplication and repeated addition.	Understand the relationship between arrays, multiplication and repeated addition.

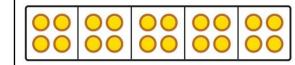
multiplication and support understanding	4 groups of 5	4 groups of 5 5 groups of 5	$0 5 10 15 20 25$ $5 \times 5 = 25$
Understanding commutativity	Use arrays to visualise commutativity. I can see 6 groups of 3. I can see 3 groups of 6.	Form arrays using counters to visualise commutativity. Rotate the array to show that orientation does not change the multiplication. This is 2 groups of 6 and also 6 groups of 2.	Use arrays to visualise commutativity. $4+4+4+4+4=20$ $5+5+5+5=20$
Learning ×2, ×5 and ×10 table facts	Develop an understanding of how to unitise groups of 2, 5 and 10 and learn corresponding times-table facts.	Understand how to relate counting in unitised groups and repeated addition with knowing key times-table facts.	$4 \times 5 = 20$ and $5 \times 4 = 20$ Understand how the times-tables increase and contain patterns.

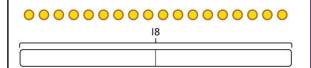

	00000000	10
	00000000	10 10
	00000000	10 10 10
		10 10 10 10
	0 10 20 30	10 10 10 10
3 groups of 10 10, 20, 30		10 10 10 10 10
3 × 10 = 30	10 + 10 + 10 = 30 3 × 10 = 30	10 10 10 10 10 10
		10 10 10 10 10 10 10
		10 10 10 10 10 10 10
		10 10 10 10 10 10 10 10
		10 10 10 10 10 10 10 10 10
		10 10 10 10 10 10 10 10 10 10 10
		5 × 10 = 50 6 × 10 = 60
Year 2 Division		


Sharing equally

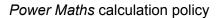
Start with a whole and share into equal parts, one at a time.

12 shared equally between 2. They get 6 each.


Start to understand how this also relates to grouping. To share equally between 3 people, take a group of 3 and give 1 to each person. Keep going until all the objects have been shared


They get 3

15 shared equally between 3. They get 5 each.


Represent the objects shared into equal parts using a bar model.

20 shared into 5 equal parts. There are 4 in each part. Use a bar model to support understanding of the division.

 $18 \div 2 = 9$

Grouping equally	Understand how to make equal groups from a whole.	Understand the relationship between grouping and the division statements.	Understand how to relate division by grouping to repeated subtraction.
		12 ÷ 3 = 4	
	8 divided into 4 equal groups. There are 2 in each group.	12 ÷ 4 = 3	0 1 2 3 4 5 6 7 8 9 10 11 12
		I2 ÷ 6 = 2	There are 4 groups now.
		12 ÷ 2 = 6	12 divided into groups of 3. 12 ÷ 3 = 4
			There are 4 groups.
Using known times-tables to solve divisions	Understand the relationship between multiplication facts and division.	Link equal grouping with repeated subtraction and known times-table facts to support division.	Relate times-table knowledge directly to division.
	4 groups of 5 cars is 20 cars in total.	40 divided by 4 is 10. Use a bar model to support understanding of the link between times-table knowledge	$1 \times 10 = 10$ $2 \times 10 = 20$ $3 \times 10 = 30$ $4 \times 10 = 40$ $5 \times 10 = 50$ $6 \times 10 = 60$ $7 \times 10 = 70$ $8 \times 10 = 80$ I know that 3 groups of 10 makes 30, so I
	20 divided by 4 is 5.	and division. 60 10 10	know that 30 divided by 10 is 3. 3 × 10 = 30 so 30 ÷ 10 = 3